This document is not finalised. Do not use its contents as a
reference as they may change in the future as the

specification process advances.

Simple File Format Family - SF3

Maintainer:

Project URL:
Specification Source:
Discussion Channel:

v0.9

Yukari Hafner jshinmera@tymoon.euy,
https://shirakumo.org/docs/sf3
https://shirakumo.org/projects/sf3
irc://irc.libera.chat/#shirakumo

mailto:shinmera@tymoon.eu
https://shirakumo.org/docs/sf3
https://shirakumo.org/projects/sf3
irc://irc.libera.chat/#shirakumo

Contents

1 Introduction 2
1.1 Principles 2
1.2 Nomenclature s 2
2 Specification Description 4
3 Formats 6
3.1 Archive 7
3.2 Audio . .. 8
3.3 Image . . . L 10
3.4 Log . . o 12
3.5 Model 14
3.6 Physics-Model L 17
3.7 Table s 19
3.8 Text . . . 21
3.9 Vector Graphic 23
4 Metadata 25
4.1 Mime-Type o 25
4.2 File Extension 25

1 Introduction

SF3 (Simple File Format Family) is a family of file format specifications. These file formats all follow a
similar scheme and the same principles. They are intended to be easy to read and write, and cover base
use-cases of various binary formats.

1.1 Principles

SF3 formats follow these principles:

e No versioning
These formats explicitly do not include any versioning at all. The way they are described in this
document is final and will not change. This means the formats are eternally forwards and backwards
compatible.

o No extensibility
There are no vendor extensibility blocks or other parts that could be added by third parties. This
ensures that a consumer of these formats will always be able to read the full file and know what
every single bit in it means.

« No optional blocks
There are no optional blocks or parts in the formats that could be omitted. This means there is no
conditional parsing needed and the structure of the files is always clear.

¢ Only raw data
The data is not compressed, encrypted, or otherwise transformed. Data is always raw. If encryption
or compression is desired, the entire file can instead be wrapped in a compression or encryption
stream (gzip, lzma, etc).

o Always little-endian
The formats are always little-endian wherever byte order matters. This is compatible with the
vast majority of processors and software today and means no byte rearrangement is necessary when
loading to memory.

e Similar layout
Each format in the family follows a very similar format of identifier, header, and payload. This
ensures that the files remain easy to parse, understand, and debug.

1.2 Nomenclature

The following clarifies how to interpret certain words in regards to this standard:

o file — A bounded sequence of octets that should be interpreted as having a structure of one of the
formats outlined in this standard.

o implementation — A program that is capable of interpreting files in accordance with this specifi-
cation.

o must — If a file should violate this requirement, it is invalid and must be rejected by the implemen-
tation.

o must not — If a file should meet this requirement, it is invalid and must be rejected by the imple-
mentation.

should — It is heavily recommended to follow this requirement, however implementations must be
able to handle the case where this requirement is not met.

should not — It is heavily recommended not to follow this requirement, however implementations
must be able to handle cases where it is met.

may — The behaviour is optional, however implementations must be able to handle it.

2 Specification Description

The format specifications in this document use a Backus-Naur-Form-style abstract syntax language. The

language is defined here:

Can

Format = Definition+
Definition = Rule Identifier? Description? '\n'
Identifier = '::=' Sequence
Description ::= '---' text
Sequence = Composition (' ' Composition)x
Composition = Composable Counter?
Composable := Rule
| OctetArray
| Octet
| Type
| Switch
| BitRange
| BitCount
| '(' Sequence ')
Counter := OneOrMore
| AnyNumber
| ExactNumber
OctetArray ::= '[' octet (' ' octet)* ']’
Type = ('int' | 'uint') IntBittage
| 'float' FloatBittage
| 'string' ExactNumber
IntBittage ='8" | '16' | '24' | '32' | '64'
FloatBittage ::= '16' | '32' | '64'
Rule ;1= name
OneOrMore pi= 4!
AnyNumber L
ExactNumber ::= '{' number '}’
Switch ::= '<' Rule SwitchCase ('|' SwitchCase)* '>'
SwitchCase ::= octet+ ':' Sequence
BitRange ::= Rule ':' (mask ',')? mask
BitCount ::= Rule '#'
name —-—-— The name of a rule as a sequence of non-numeric ASCII
characters.
octet --- Eight bits expressed as two hexadecimal digits.
text —-—-- Human-readable textual description of the contents.
number --—- A textual description of the number of occurrences.
make a reference to other rules, in which case the rule's
content designates a runtime number.
mask --- A textual description of the number of bits to use.

White space unless otherwise mandated may be inserted liberally to aid readability. Each rule ul-
timately defines a sequence of octets that should be parsed. The Types mentioned translate to signed
integers, unsigned integers, and IEEE floating point numbers of the given number of bits. string desig-
nates a null-terminated UTF-8 encoded character sequence with an octet length (including null-terminator)

as indicated by the required following ExactNumber rule.

4

A Switch acts as a runtime switching based on the value of the referenced Rule. This means that when
evaluated, the Switch should act as if it were the Sequence of the SwitchCase whose octet sequence
matches the value of the referenced Rule. If the Rule evaluates to a value that does not match any of
the SwitchCases, the file is invalid. For example, <x 00: int8 | 01: int16> with x evaluating to 00
would match an int8, and when evaluating to 01 would match an int16.

A BitRange extracts the bits of the specified Rule by shifting the integer to the right by the first mask
number of bits, if given. It then masks the remaining integer such that only the number of bits specified
in the second mask remain. For example, x:2,4 with x being the binary sequence 10101101 would leave
the bits 1011.

A BitCount is the number of set bits of the specified Rule.

3 Formats

Each format is made up of the following structure, where a valid file must begin with the File rule. The
prefix to the Header is structured to always take up 16 octets, and each file can only contain a single
instance of a format and its payload.

File = Identifier Header Payload

Identifier ::= [81 53 46 33 00 EO DO OD OA OA] format-id checksum [00]
checksum = uint32 --- A CRC32 checksum of the Payload.

format-id = uint8 --- A single octet identifying the format.

The rationale for the ten octets in the identifier is as follows:

» 81 An octet to stop byte-peekers from determining text. The octet lies in the undefined ranges of
ASCII, ISO-8859-1, Windows-1252, and SJIS.

o 53 46 33 ASCII sequence spelling SF3 for human-readability.
e 00 A null octet to stop C-string utilities from trying to munch the rest of the file.
e EODO An invalid UTF-8 octet sequence.

ODOAOA A CRLFLF sequence to catch bad line conversion utilities.

The Header and Payload will be described by the individual formats.
The values for the format-id are interpreted as follows:

e 01 — Archive

e 02 — Audio

e 03 — Image

e 04 — Log

e 05 — Model

e 06 — Physics-Model
e 07 — Table

e 08 — Text

e 09 — Vector Graphic

Any other value for the format-id is reserved for future formats in this spec. If an implementation
only supports a subset of these formats, it must generate an error when it encounters a format-id that it
does not support.

3.1 Archive

The Archive format allows storing multiple files in one binary package. The file also includes some metadata
so that the files can be stored with a relative path and mime-type, allowing both file-system extraction,
and content inspection without explicit extraction.

Header ::= Count MetadataSize
Payload ::= Metadata Files
Count ::= uint64

—--— The number of entries.
MetadataSize ::= uint64

--— The octet size of the Metadata payload.
Metadata ::= EntryOffset{Count} MetaEntry{Count}
EntryOffset ::= uint64

--- The octet offset of the corresponding MetaEntry from
the beginning of Metadata.
MetaEntry ::= ModTime Checksum Mime Path
--— A descriptor of modification time, CRC checksum, mime
type, and path.
ModTime ::= int64
--- A unix-time timestamp denoting when the file was last
modified. Note the time is signed. Negative numbers
designating times before 0:0:0 1.1.1970.

Mime 1= mime-length string{mime-length}

--- The mime-type of the corresponding file.
mime-length ::= uint8
Checksum ::= uint32

-—— A CRC32 checksum.
Path ::= path-length string{path-length}

--- The relative path of the corresponding file.
path-length ::= uintl6
Files ::= FileOffset{Count} FilePayload{Count}
FileOffset ::= uint64

—--— The octet offset of the corresponding File from the
beginning of Files.

FilePayload ::= file-length uint8{file-length}
--- A binary file payload.
file-length ::= uint64

The included MetadataSize, EntryOffset, and FileOffset fields should allow constant-time access
to any content within the archive.
If no mime-type is known for a file that should be stored, the corresponding Mime should be set to
application/octet-stream.

Each EntryOffset in Metadata, and each FileOffset in Files must be larger than the preceding
entry.

3.1.1 Use-Case

This format is useful if you need a way to bundle files together into a single payload, and require constant-
time, typed access to individual files without having to extract, decompress, or decrypt.

3.2 Audio

This format is for storing plain audio sample data. It includes support for most types of sample formats
and channel numbers out there. The sample channels are interleaved, allowing the file to be written on

the fly.

Header ::= samplerate channels format frame-count
Payload = (Sample{channels}){frame-count}
samplerate = uint32
--— The samplerate in Hz.
channels = uint8
—--— The number of audio channels.
format = uint8
--- A single octet identifying the per-sample data type.
frame-count ::= uint64
--— The number of audio frames in the file.
sample-size ::= Format:4
—--— The number of octets per sample.
Sample ::= <format O01: uint8
| 02: int16
| 04: int32
| 08: int64
| 11: uint8
| 12: uint16
| 14: uint32
| 18: uint64
| 22: floatl6
| 24: float32

| 28: float64>
--- A single-channel value in the format indicated
by format.

The values for format are interpreted as follows, declaring the encoding of a single sample:

o 01 unsigned 8-bit integer in the non-linear ”A-law” scheme.

02 signed 16-bit integer linear PCM.

o 04 signed 32-bit integer linear PCM.

e 08 signed 64-bit integer linear PCM.

e 11 unsigned 8-bit integer in the non-linear "u-law” scheme.
e 12 unsigned 16-bit integer linear PCM.

e 14 unsigned 32-bit integer linear PCM.

» 18 unsigned 64-bit integer linear PCM.

e 22 16-bit short-float linear PCM.

o 24 32-bit single-float linear PCM.

e 28 64-bit double-float linear PCM.

Any other value for format is invalid.
The values for channels are interpreted as follows, declaring the order and purpose of the channels:

e 1 —FC

« 2 —FLFR

« 3—FLFRFC

« 4 —FL FR RL RR

« 5~ FLFRRLRRS

« 6 —FLFRFCRLRRS

« 7— FL FR FC RL RR SL SR

« 8 FLFRFCRLRRSL SRS

« 9 —FLFRFCRLRRRCSLSRS

Where

o FL — Front Left

e FR — Front Right
e FC — Front Centre
e RL — Rear Left

e RR — Rear Right

e RC — Rear Centre
o SL — Side Left

e SR — Side Right

e S — Subwoofer

Any other value for channels is invalid.
The payload must have exactly FrameCount*Channels*sample-size number of octets.

3.2.1 Use-Case

This format is useful for raw audio data storage, which means it should be trivial to feed into an audio
playback system with minimal overhead. Unlike the traditional uncompressed audio format, Wave, this
follows a much clearer and simpler specification with sensible metadata encoding.

3.3 Image

This format is for storing raw image data. Unlike plain data however, it includes a header that completely

identifies the pixel data layout and format. The format supports 3D images as well.

Header ::= Width Height Depth channels format
Payload ::= Layer{Depth}

Layer ::= Row{Height}

Row ::= Color{Width}

Color ::= channel{channel-count}

Width ::= uint32

Height 1= uint32

Depth ;= uint32

format ::= uint8

--- A single octet identifying the per-channel data type.
channels ::= uint8
--- A single octet identifying the number and order of
channels.
channel-count ::= channels:4
—--- The number of channels indicated by the lower 4 bits
of the channels.

format-size ::= format:4
—--- The number of octets per channel sample.
channel ::= <format 01: int8
| 02: int16
| 04: int32
| 08: int64
| 11: uint8
| 12: uinti16
| 14: uint32
| 18: uint64
| 22: floatl6
| 24: float32

| 28: float64>
--— A single-channel colour value in the format
indicated by format.

Any other value for format is invalid.
The values for channels are interpreted as follows:

e 01 —V

e 02— VA

e 03— RGB
e 04 — RGBA
e 12 — AV

e 13— BGR
« 14 — ABGR

10

e 24 — ARGB

e 34 — BGRA
o 44 — CMYK
e 54 — KYMC
Where

o V— Value (Brightness)
e« R— Red

e G — Green

e B— Blue
e A — Alpha
e C— Cyan

e M — Magenta
e Y — Yellow

« K— Black

Any other value for channels is invalid.
The payload must have exactly Width*Height*Depth*channel-count*format-size number of octets.

The colours are stored in linear format without a perceptual colour space or gamma correction in
effect. For the floating point formats, values ranged from 0 to 1 correspond to the same intensity of the
minimal and maximal values of an unsigned integer format. However, a floating point format file may
store values beyond that range. Both the floating point and signed integer formats may also store negative
colour values, though SF3 makes no attempt to specify the perceptual display of these colours. The tone
mapping process required to accurately render the colours stored in an SF3 Image in general is application
dependent.

3.3.1 Use-Case

This format is useful for storing raw bitmap data that can be directly memory-mapped and read out. This
is especially convenient for GPU texture uploads with DirectX, OpenGL, Vulkan, or similar.

11

3.4 Log

This format is for storing generic logging and event information.

Header
Payload
Chunk
StartTime

Entry
Size

Time

Severity
Source

source-length
Category

category-length ::

Message

message-length
ChunkCount

ChunkSize
EntryCount

EntryOffset

StartTime ChunkCount

Chunk*

ChunkSize EntryCount EntryOffset{EntryCount} Entry{EntryCount}
int64

A unix-time timestamp specifying when this file

begins.

Size Time Severity Source Category Message
uint32

The size of the remaining log entry in octets.
uint64

The number of milliseconds since StartTime at which
this log entry was recorded.

int8

The severity or importance of the log entry.
source-length string{source-length}

An identifier of the source of the log entry.

uint8

category-length string{category-length}

An identifier of the category the entry belongs to.
uint8

message-length string{message-length}

A human-readable message describing the event.
uint16

uintl16

The number of chunks in the file.

uint64

The octet size of the chunk.

uint32

The number of entries in the chunk.

uint64

The octet offset of the corresponding Entry from the
beginning of Payload.

The severity should be zero if the message is of neutral importance, positive for increasingly vital
information, and negative for increasingly detailed information.

Both the Source and Category may consist of just a null octet each if the information is not relevant.

The format is designed such that an application can continuously append new entries. To do so, it
should behave as follows:

2. Increase the ChunkCount

3. Append a new Chunk and allocate a number of Entry0ffsets within the chunk.

4. When a new entry is generated and there are still unused EntryOffsets:

(a) Update the ChunkSize and EntryCount

(b) Fill in the current end offset into the corresponding Entry0ffset.

(¢) Append the new Entry.

12

Otherwise start from 1.

The Entry0ffsets allow a reading application to scan through the log much more quickly, and perform
a binary search to identify date ranges.

3.4.1 Use-Case

This format is useful for basic logging purposes in applications that run for a longer amount of time.The
binary format allows quickly skipping ahead in the file to reach interesting messages or to filter out
important events.

13

3.5 Model

This format is for singular triangular meshes only. It does not include a scene graph or the capability for
non-triangular or non-static meshes. If animation of the model is desired, animation information can be

delivered separately.

Header
Payload
MaterialSize
Material
Texture
texture-size

Faces

face-count
Vertices

vertex—-count
Position

uv
Color
Normal
Tangent
format

material-type

material-count

vertex

format material-type MaterialSize
Material Faces Vertices
uint32
The octet size of the Material payload.
Texture{material-count}
An array of texture maps for the model's material.
texture-size string{texture-size}
A relative file path to an image.
uintl6
face-count uint32{face-count}
An array of O-based indices into the Vertices
array, every 3 of which describe a face.
uint32
vertex-count float32{vertex-count}
An array of vertices, packed as floats. The count
must be a multiple of the float count of an
individual vertex.
uint32
float32 float32 float32
A vertex position in model-space.
float32 float32
A texture coordinate in texture-space.
float32 float32 float32
An RGB colour triplet, each channel in [0,1].
float32 float32 float32
A surface normal, in tangent-space.
float32 float32 float32
A surface tangent, in tangent-space.
uint8
A single octet identifying the per-vertex format.
uint8
A single octet identifying the material used.
material-type#
The number of material textures as indicated by
material-type.
<format 01: Position

| 03: Position UV

| 05: Position Color

| 09: Position Normal

| OB: Position UV Normal

| OD: Position Color Normal

| 1B: Position UV Normal Tangent

| 1D: Position Color Normal Tangent>

--— A single-vertex value in the format indicated by

format.

14

The values for the vertex format encode the set of attributes as a bit set, where:

3. 01 — Position
e 02— UV

e 04 — Color

e 08 — Normal

e 10 — Tangent

However only the values listed for the vertex type are valid.
The values for material-type are interpreted as follows, and describe the usage and number of
Textures:

e 00 — (no material)

e 01 — Albedo

e 03 — Albedo Normal

o 81 — Albedo Emission

e 43 — Albedo Normal Specular

o 83 — Albedo Normal Emission

e 07 — Albedo Normal Metallic

o 1B — Albedo Normal Metalness Roughness

e C3 — Albedo Normal Specular Emission

o 87 — Albedo Normal Metallic Emission

e 9B — Albedo Normal Metalness Roughness Emission
e 3B — Albedo Normal Metalness Roughness Occlusion

o BB — Albedo Normal Metalness Roughness Occlusion Emission

Any other value for material-type is invalid. It should be noted that the set of attributes is encoded
as a bit set:

e 01 — Albedo

e 02 — Normal

e 04 — Metallic

e 08 — Metalness

e 10 — Roughness
e 20 — Occlusion

e 40 — Specular

15

e 80 — Emission

The Metallic texture is a combination of Metalness, Roughness, and Occlusion in the R, G, and B
channels respectively.

The included MaterialSize field should allow constant-time access to the vertex data without having
to parse the Material structure, if that structure is not needed. If the Faces array is empty, then the
faces are implicit and every three vertices in the Vertices array form a face.

The coordinate system is intended to be right handed with Y+ up, Z- forward.

3.5.1 Use-Case

This format is useful for storing uncompressed, directly accessible 3D geometry data. It is packed in such a
way that it should be trivial to upload into vertex-buffers for use with GPU rendering toolkits like DirectX,
OpenGL, Vulkan, or similar. For instance, the format describes the vertex-array layout, the Faces array
makes up the element-buffer, and the Vertices makes up the vertex-buffer.

16

3.6 Physics-Model

This format is for storing a series of convex meshes that make up the collision shapes of a more complex
model. It is far more efficient at storing this data than the generic model format and allows multiple
shapes in one.

Header
Payload
Tensor

Shape

shape-type
Ellipsoid

Box

Cylinder

Pill

Mesh

Transform

Vertex

shape-count

vertex—-count

mass

format hull-count
mass Tensor shape-count Shape{shape-count}
float32{9}
The inertia tensor for the entire model, in row-major
order.
Transform shape-type
<shape-type 01: Ellipsoid
| 02: Box
| 03: Cylinder
| 04: Pill
| 05: Mesh>
uint8
float32 float32 float32
The width, height, and depth of the ellipsoid
measured from its centre.
float32 float32 float32
The width, height, and depth of the box measured from
its centre.
float32 float32 float32
The bottom radius, top radius, and height of the
cylinder measured from its centre.
float32 float32 float32
The bottom radius, top radius, and height of the
cylinder measured from its centre.
vertex-count Vertex{vertex-count}
A single convex hull as a series of vertices forming
its surface.
float32{16}
The transform matrix describing the offset and
orientation of this hull from the model's origin, in
row-major order.
float32 float32 float32
A single vertex on the convex hull's surface.
uintl16
The number of shapes that make up the model.
uintl16
The number of vertices that make up the hull's
boundary.
float32
The initial mass of the unscaled model in kg.

Each of the implicit shapes (ellipsoid, box, cylinder, pill) are specified with the origin being the shape’s
centre, and the three values, width, height, and depth, being in X, Y, and Z directions respectively from
that centre. Meaning: a cube specified as Width 1, Height 2, Depth 3 has a volume of 48, since each
dimension only specifies the half of that side’s length. All dimensions must be greater than or equal to
zZero.

17

For the cylinder and pill specifically the shapes are oriented Y-up. Meaning: a cylinder’s flat sides
are oriented Y- and Y+. For the pill the centres of the spheres at its ends are apart from each other by
2*height. If 2*height of the pill is less than the combined radii of both spheres, the collision behaviour is
implementation dependent as the shape is no longer well defined.

For the Mesh, only the bounding vertices are specified. In order to recover face data when necessary,
an algorithm like Quickhull may be used.

The coordinate system is intended to be right handed with Y+ up, Z- forward.

3.6.1 Use-Case

This format is intended for use in games and other applications that require a convex decomposition of a
model for use in collision testing. The packed storage format is ideal for direct use in-engine.

18

3.7 Table

This format specifies an arbitrary "table” similar to CSV files, albeit with a strict table schema encoded
as part of the file.

48: Timestamp
58: HighResolutionTimestamp
61: Boolean>

Header ::= spec—length column-count row-length row-count
Payload ::= ColumnSpec{column-count} Row{row-count}
spec-length ::= uint32
—--— The length of the ColumnSpec block in octets.
column-count ::= uintl6
—-—— The number of columns per row.
row-length ::= uint64
--- The length of every row in octets.
row-count ::= uint64
—-—- The number of rows in the file.
ColumnSpec ::= name-length string{name-length} column-length Column
name-length ::= uintl6
--- The length of the column name in octets.
column-length ::= uint32
--- The length of the column in octets.
Column ::= column-type <column-type 01: Uint8
| 02: Uint16
| 04: Uint32
| 08: Uint64
| 11: Int8
| 12: Int16
| 14: Int32
| 18: Int64
| 22: Floatl6
| 24: Float32
| 28: Float64
| 31: String
|
I
I

column-type ::= uint8

—-—— The type of the column data.
element-size ::= column-type:4

—--- The number of octets per "element" of the column.
Uint8 --— Denotes an array of unsigned 8-bit integers.
Uint16 --- Denotes an array of unsigned 16-bit integers.
Uint32 --- Denotes an array of unsigned 32-bit integers.
Uint64 —-—— Denotes an array of unsigned 64-bit integers.
Int8 -—— Denotes an array of signed 8-bit integers.
Int16 --— Denotes an array of signed 16-bit integers.
Int32 --- Denotes an array of signed 32-bit integers.
Int64 --- Denotes an array of signed 64-bit integers.
Float16 —-—— Denotes an array of 16-bit IEEE half precision

floating point numbers.

Float32 —-—-— Denotes an array of 32-bit IEEE single precision

floating point numbers.

19

Float64 —-—-— Denotes an array of 64-bit IEEE double precision
floating point numbers.

String —-—- Denotes an UTF-8 encoded, null-terminated
character string.
Timestamp —-—— Denotes an array of signed 64-bit integers that

encode Unix-time timestamps.
HighResolutionTimestamp
—--- Denotes an array of unsigned 64-bit integers that
encode timestamps as the number of nanoseconds
since the Unix epoch.

Boolean -—— Denotes an array of unsigned 8-bit integers where
0 is denoted "False" and any other value "True".
Row ::= uint8{row-length}

Usually the column-length will fit exactly one element, meaning it will be the same as element-size,
and each cell will not be an array but rather just one value. The row-length must be a sum of all
column-lengths and merely serves as a faster way to index into the file. The column-length must be a
multiple of element-size. And thus, the number of logical elements in a column with an array type can
be determined by dividing column-length by element-size.

The Row is specified as an opaque blob in the BNF, but can be trivially decoded according to the layout
specified by the ColumnSpecs. The data for each column must follow in the same order as the ColumnSpecs
inside the row, without any gaps between. A decoder can thus simply iterate over the ColumnSpecs and
decode each "cell” by first determining the number of elements, and then decoding each element in the
cell according to the column-type.

For String columns especially it should be noted that, due to the null termination, the string may be
shorter than the number of bytes reserved by the column-length.

3.7.1 Use-Case

This format lends itself well to structured data that follows a precise schema, especially when new data
only needs to be appended such as when recording datapoints. The header fields allow constant-time
random access to the rows as well as windowing of the data.

20

3.8 Text

This format allows for a very simple rich text markup. Primitive displays can also ignore all the markup
directly and instead display the text plain without needing special processing to strip the markup out.

Header
Payload

markup-count

text-length
markup-size

Markup
Start
End

Option

option-type
Bold

Italic
Underline

Strike

Mono
Color

Size
Heading
Link
Target

Level

Address

address-length ::

markup-size

markup-count Markup{markup-count} text-length string{text-length}
uint32

uint64

uint64

The size of the markup block in octets

Start End Option

A singular markup option

uint64

The (O-based) index of the first codepoint being styled.
uint64

The (O-based) index of the last codepoint being styled.
option-type <option-type 01: Bold

| 02: Italic

| 03: Underline
| 04: Strike

| 05: Mono

| 06: Color

| 07: Size

| 08: Heading

| 09: Link

| OA: Target>

uint8

A description of the text style.

The font weight should be set to "bold"

The font slant should be set to "italic"

A line should be drawn under the text's baseline.

A line should be drawn between the text's baseline and
ascent line.

The font should be set to monospaced mode.

float32 float32 float32

The text colour should be set to this R G B triplet.

float32

The text size should be multiplied by this factor.
Level

The text should be a heading of this level.
Address

The text should be an interactable link to its address.
Address

The text should be a link target for its address.

uint8

The heading level. The higher, the more deeply nested
the heading is.

address-length string{address-length}

Some kind of target identifier. Often a URL string.
uint16

21

The font family, default font size, background colour, foreground colour, and line wrapping mode are
all determined by the visualiser. The visualiser may also apply default alternate styling to sections marked
up with the Link option. If the Address of a Link is the same as that of a Target option, the Link markup
should, when interacted with, point the user to the text marked up by the corresponding Target option.
Otherwise the behaviour of interaction with the Link text is up to the implementation.

The Markup options may be in any particular order with regards to their Start and End, and the
bounds may also overlap arbitrarily.

3.8.1 Use-Case

This format is useful for storing simple rich text documents that don’t require complex layouting or
processing.

22

3.9 Vector Graphic

This format offers a relatively simple but capable vector graphic format for scalable images.

Header =
Payload oS
Width D=
Height D=

Count o=

Instruction 1=

instruction-typ

Line 1i=
Rectangle ??;
Circle D=
Polygon L=
Curve 1i=
Text D=
Font 1=
font-length D=

String 1i=

string-length ::=
Identity -—=

Matrix 1=

ShapeOutline ::=
ShapeBounds 1=

ShapeFill 1=

Width Height Count

= Instruction{Count}
uint32
The width of the visible canvas in units.
uint32
The height of the visible canvas in units.
uint32

The number of instructions to appear.
instruction-type
<instruction-type O1: Line

02: Rectangle

|

| 03: Circle

| 04: Polygon
| 05: Curve

| 06: Text

| 11: Identity
| 12: Matrix>

::= uint8

Color Thickness ShapeOutline

A sequence of connected line segments.
ShapeBounds ShapeFill

An axis-aligned rectangle.

ShapeBounds ShapeFill

An axis-aligned oval circle.

ShapeQutline ShapeFill

A many-edged convex polygon.

ShapeOutline ShapeFill

A cubic Bezier curve directed by its control points.
Point Color Font FontSize String

A single line of text.

font-length string{font-length}

The name of the font family to use to render the
text.

uint16

string-length string{string-length}

The string of text to be displayed

uint16

A reset of the current transform matrix to the
100, 010 matrix.

float32{62}

A coordinate transform matrix to be applied to
subsequent instructions.

Edges Point{Edges}

A list of edge points of a composite shape.
Point Size

The bounding box of a shape.

Color Color Thickness

23

—--— The fill colour, outline colour, and outline thickness.

Point ::= float32 float32

--- A position in x/y.
Size ::= float32 float32

--- The bounding size of a shape in width/height.
Color ::= float32 float32 float32 float32

--- An RGBA colour quadruplet in the range of [0, 1].
Edges 1= uintl6

—-—— The number of points to appear in the edge list.
Thickness ::= float32

—--- The thickness of the outline in units.
FontSize ::= float32

——— The size of an em in units.

The coordinate system should be defined with X growing to the right, Y growing upwards, and the
origin being in the lower left corner of the canvas. Whenever a Transform is applied, the given matrix
must be applied to all following Elements until the next Transform. This transformation applies to the
shape as a whole, not just the Points that define it in the file.

When an element with a ShapeFill should be drawn, the fill must be drawn first, with the outline (if
visible) second on top. If the shape is bounded by ShapeBounds, the fill should meet the bounds, and the
outline should be centred on the bounds when hitting them. If the shape is bounded by a ShapeOutline,
the outline must be drawn centred on the lines defined by the Edges.

For Curve and Polygon, if the Points do not form a closed shape, the fill should be drawn as a closed
shape by directly connecting the first and last points with a straight line.

In the case of the Curve, the points should be interpreted as follows: EdgePoint ControlPoint
(ControlPoint EdgePoint ControlPoint)* ControlPoint EdgePoint. As such, the Edges number
for a Curve must always match x+2 % 3 == 0 and must at least be 4. Any other value is an error.
The ControlPoint coordinates are relative to their corresponding EdgePoint.

In the case of Polygon and Rectangle, the Edges number must be at least 2. Any other value is an
error.

For the Size, Thickness, FontSize, and Color, all float components must be positive and real.
Infinities, NaNs, and negative numbers are an error.

For the Point and Matrix, all float components must be real. Infinities and NaNs are an error. The
Matrix is specified in row-major order, meaning in order the entries are m00 m01 m02 m10 m11 m12.

When rendering Text, the Point specifies the location of the middle on the baseline of the first character
that is rendered.

If a visualiser or editor of a vector graphic file does not have access to the font specified in a Font field,
it should generate an error, but may exchange the font for a similar one. In either case, it must inform
the user of the missing font.

3.9.1 Use-Case

This format is useful for representing vector graphics in a light-weight way that should be easy to write a
visualiser for. It intentionally does not specify much about text processing and instead leaves most of this
up to the implementation.

24

4 Metadata

These formats can be delivered as part of a binary stream or deposited in a file system. The following are
recommendation for metadata identifiers to distinguish SF3 data without having to parse it.

4.1 Mime-Type
The mime-types for SF3 files should be as follows, according to the format used:
o Archive application/x.sf3-archive
e Audio audio/x.sf3
 Image image/x.sf3
« Log application/x.sf3-1log
e Model model/x.sf3
o Physics-Model model/x.sf3-physics
o Text application/x.sf3-text

e Vector Graphic image/x.sf3-vector

If a general SF3 file should be designated, the mime-type should be application/x.sf3. If/when the
IANA registration for an official mime-type is approved, the x. prefix may be dropped.

4.2 File Extension

The file extension should always end with .sf3. Specifically, for the formats the following extended
extensions may be used:

e Archive .ar.sf3

e Audio .au.sf3

e Image .img.sf3

e Log .log.sf3

e« Model .mod.sf3

« Physics-Model .phys.sf3
o Text .txt.sf3

e Vector Graphic .vec.sf3

25

	Introduction
	Principles
	Nomenclature

	Specification Description
	Formats
	Archive
	Audio
	Image
	Log
	Model
	Physics-Model
	Table
	Text
	Vector Graphic

	Metadata
	Mime-Type
	File Extension

